
Facebook API

Contents
Introduction 2

Using the Demo 3

The Asynchronous Social Event 6

Extension Functions 7

fb_init 8

fb_ready 8

fb_status 10

fb_login 11

fb_logout 14

fb_user_id 15

fb_accesstoken 16

fb_refresh_accesstoken 17

fb_send_event 18

fb_check_permission 20

fb_request_read_permissions 21

fb_request_publish_permissions 23

fb_graph_request 25

fb_dialog 27

Introduction

This PDF manual is designed for you to use as a reference to the different Facebook API demo objects

and scripts, and as such does not contain tutorials on how to set up the Facebook API in your games. If

you wish information on setting up, general use, etc… then please see the following YoYo Games

Knowledge Base article:

● iOS, Android and HTML5: Integrating Facebook

The rest of this PDF manual is dedicated to the description of the demo, the API, and its objects and

scripts.

https://help.yoyogames.com/hc/en-us/articles/360004488072

Using the Demo

The Facebook API demo contains both the general API extension, as well as objects and rooms. If you

have already set up a game on the Facebook Developer dashboard, or have followed the initial setup

guide (see here), then you can start testing the API using the demo.

Since GameMaker Studio v2.3.6, setup for your project is done inside the extension itself and will

depend on your target platform Android/iOS. First go into the FacebookExtension2 options by double

clicking the extension on your asset browser:

This will bring up the following panel,

from here you need to select Android/iOS from the Extra Platforms tab;

If you are targeting Android you will have to use your Facebook App ID and use it as displayed below:

you need to change both facebook_app_id (to your Facebook App ID) and fb_login_protocol_scheme

(to the Facebook App ID prefixed with “fb”).

If you are targeting iOS you will need to change the panel with the information below:

In the first section you will need your FacebookAppID, the FacebookClientToken (that you can get from

the Facebook dashboard under Settings -> Advanced -> Client Token) and the FacebookDisplayName

which is the name of your dashboard application. In the second section you will need to replace the

value there with your Facebook App ID prefixed with “fb”.

Once you have filled in those details, you are ready to test the demo. Simply plug in your device and set

the target platform then run the demo. Once it runs, try logging in then then each of the other buttons

and pay attention to the debug output to ensure that everything works correctly.

The Asynchronous Social Event

When using the Facebook extension in your projects, you will be calling different functions that will

trigger “callbacks” from the Facebook API. What this means is that certain functions will be run but

won’t actually give a result until sometime in the future, which could be the next step, or it could be a

few seconds later. This result, when it comes, is called the “callback” and is the Facebook API responding

to something you’ve done. This callback is dealt with in the Asynchronous Social Event.

This event will always have a DS map in the GML variable async_load, and this map can be parsed to get

the required information. Each function will generate different callbacks, but they will all have certain

key/value pairs in common, which we’ll list here:

● “type” – This is the event type key and it will hold a string with the type of event that has been

triggered. For example, if it’s a login event, then the string will be “facebook_login_result”.

● “requestId” – This is the unique ID value of the function request. All functions that generate a

callback will return a request ID, which can then be stored in a variable. This request ID value can

then be checked in the asynchronous event to make sure that the correct code is being run for

the function that triggered it. In general, this is only useful if there is a possibility of multiple calls

to the same function, which in turn generates multiple callbacks all of the same “type”.

● “status” – This can be used to identify whether or not the API call was successful. The value will

be one of the following strings:

o “success” – The function call was processed successfully

o “error” – There was an error of some type (eg: network failure, timeout, etc…)

o “cancelled” – The user cancelled the operation before it could be completed (not all

function callbacks will have this as a possible status)

The rest of the key/value pairs in the map will depend on the function that triggered the Async Event,

and you should check the individual functions listed in the rest of this manual for exact details.

Extension Functions

The rest of this manual is taken up with the different functions and constants that are included as part of

the Facebook API Extension. If you are updating from a previous version of GameMaker Studio, then you

should see that the new extension functions map easily to the old facebook_*() functions.

https://docs2.yoyogames.com/index.html?page=source%2F_build%2F3_scripting%2F4_gml_reference%2Fasynchronous%20functions%2Ffacebook%2Findex.html

fb_init

Description

This function should be called to initialise the Facebook API, before using any of the other

Facebook functions. This should be done only once in the game and can be done at any time, but

it is recommended that you call this function right at the game start before anything else. Note

too, that even if you use facebook_logout() at some point in your game you will not need to

use this function again to log in.

IMPORTANT! This function is called automatically by the extension and you should NOT

need to use it unless you have specifically edited the extension to prevent the

initialisation function being called.

Syntax

fb_init();

Returns

N/A

Example

fb_init();
var permissions = ds_list_create();
ds_list_add(permissions,"public_profile", "user_friends");
fb_login(permissions, fb_login_default);
ds_list_destroy(permissions);

fb_ready

Description

This function can be called to check and see if the Facebook API has been initialised correctly. It

will return true if the API has been initialised or false otherwise.

Syntax

fb_ready();

Returns

Bool

Example

if !fb_ready()
{
fb_init();
}

fb_status

Description

With this function you can poll Facebook for the current status of the user login. One of the

following strings is returned (note that they are always returned in capital letters):

● “AUTHORISED”: This means that the user has logged in correctly, but not all permissions

may have been granted.

● “PROCESSING”: This is returned when the login process is currently un-resolved.

● “IDLE”: This is returned when the connection to the Facebook API has been initialised,

but no further action has been taken (ie: no user is logged in).

● “FAILED”: This means that the user has not logged in correctly, usually due to a

connection error.

This function does not continuously check the Facebook API and will only be updated after a

Facebook action has been resolved (like logging in, logging out or requesting permissions).

Syntax

fb_status();

Returns

String

Example

switch (fb_status())
{
case "AUTHORISED": global.Auth = true; instance_destroy(); break;
case "FAILED": facebook_login(permissions); alarm[0] = 30; break;
default: alarm[0] = 30;
}

fb_login

Description

With this function GameMaker Studio 2 will connect to Facebook and ask the user to log into

their account. You may also supply additional permission requests in the form of a DS list that

this function then converts into a JSON array to communicate them to Facebook. There are a

wide variety of permissions you may request and they are documented on the Facebook

developers pages found here. If you do not wish to ask for any special or extended permissions

then you will still need to send a DS list, but this time it will be empty.

NOTE: You can only use the default read permissions with this function. If you require any

write permissions or extended read permissions, then you need to call

fb_request_publish_permissions() or fb_request_read_permissions after

logging in. Also note that if your game requests more than the “public_profile”, “email”

and “user_friends” permissions, it will require review by Facebook before it can be played

by people other than the game's developers.

The function has an extra parameter required for iOS login, which should be one of the constants

listed below (other platforms can simply use fb_login_default for the argument):

Constant Description

FacebookExtension2_LOGIN_TYPE_NATIVE This is the default behaviour and indicates
logging in through the native Facebook app
may be used. The SDK may still use Safari
instead.

FacebookExtension2_LOGIN_TYPE_BROWSER Attempts log in through the Safari or
SFSafariViewController, if available.

FacebookExtension2_LOGIN_TYPE_SYSTEM_ACCOUNT Attempts log in through the Facebook
account currently signed in through the
device Settings.
If the account is not available this behaviour
falls back to
FacebookExtension2_LOGIN_TYPE_NATIVE.

FacebookExtension2_LOGIN_TYPE_WEB_VIEW Attempts log in through a modal Web View
pop up. This behaviour is only available to
certain types of apps. Please check the
Facebook Platform Policy to verify your app
meets the restrictions.

The above listed constants change the login behaviour on iOS, permitting you to select which

fallback methods to use (if any) should login fail from through the normal process. For further

information please see this Facebook Developer page.

https://developers.facebook.com/docs/facebook-login/permissions
https://developers.facebook.com/docs/reference/iossdk/current/FBSDKLoginKit/enums/fbsdkloginbehavior.html/

When you call the function, it will return an integer request ID value that can be used in the

Social Asynchronous Event to identify the request that triggered the event. In this Async event,

you can then check the built-in DS map async_load for the following keys:

Cont.../

fb_login Cont../

Key Description Data Type

“type” Used for identifying the type of
API call that this event was
generated by.

String:
“facebook_login_result”

“requestId” Contains the unique request ID
returned by the function call that
this request was generated by.

Integer

“status” Used to identify whether or not
the API call was successful.

String:
“success”
“cancelled”
“error”

“exception” Returned if “status” is equal to
"error". Provides details on the
exception that caused the error.

String

“<permission>”
eg:
“user_friends”

Each permission requested will
be added as a key to this map,
with their value being set to
either "granted" or "declined",
depending on whether the user
authorized them or not.

String:
“granted”
“declined”

Syntax

fb_login(permission_list, login_type);

Argument Description Data Type
permission_list The permissions you want to have from

the user logging in.
DS List

login_type The iOS only log in type (see the list of
constants below).

Constant

Returns

Integer (request ID)

Example

var permissions = ds_list_create();
ds_list_add(permissions,"public_profile", "user_friends");
fb_login(permissions, fb_login_default);
ds_list_destroy(permissions);

fb_logout

Description

With this function you can log the user out of Facebook. Note, this does not mean that Facebook

is disconnected from the game and there is no need to call fb_init() again if you wish the user

to log back in again. It is also worth noting that certain graph and dialogue functions may work

even with the user logged out, as they will prompt the user to log in again beforehand.

Syntax

fb_logout();

Returns

N/A

Example

if mouse_check_button_pressed(mb_left)
{
fb_logout();
}

fb_user_id

Description

With this function you can poll Facebook for the user id of the currently logged in user. This will

be returned as a string, with a format similar to "07778915123" which can then be used with the

other Facebook functions.

Syntax

fb_user_id();

Returns

String

Example

if fb_status() == “AUTHORISED”
{
global.FB_id = fb_user_id();
}

fb_accesstoken

Description

This function will return the access token that Facebook gives you when you log in to verify that

it's a valid log in. An access token is a random string that provides temporary, secure access to

the Facebook APIs.

Syntax

fb_accesstoken();

Returns

String

Example

if fb_status() == “AUTHORISED”
{
global.FB_token = fb_accesstoken();
}

fb_refresh_accesstoken

Description

This function can be used to refresh the access token for the logged in user. When you call the

function, it will return an integer request ID value that can be used in the Social Asynchronous

Event to identify the request that triggered the event. In this Async event, you can then check

the built-in DS map async_load for the following keys:

Key Description Data Type

“type” Used for identifying the type of
API call that this event was
generated by.

String:
“fb_refresh_accesstoken”

“requestId” Contains the unique request ID
returned by the function call that
this request was generated by.

Integer

“status” Used to identify whether or not
the API call was successful.

String:
“success”
“error”

“exception” Returned if “status” is equal to
"error". Provides details on the
exception that caused the error.

String

“access_token” The new access token for the
user

String

Syntax

fb_refresh_accesstoken();

Returns

Integer (request ID)

Example

global.FB_token = fb_accesstoken();

// In the Async Social Event

if async_load[? “requestId”] == global.FB_token
{
if async_load[? “status”] == “success”

{
global.FB_token = async_load[? “access_token”];

}
}

fb_send_event

Description

This function will send a Facebook analytics event to the Developer Console. The function takes

one of the following constants to define the event ID (type of event):

● FacebookExtension2_EVENT_ACHIEVED_LEVEL
● FacebookExtension2_EVENT_ADDED_PAYMENT_INFO
● FacebookExtension2_EVENT_ADDED_TO_CART
● FacebookExtension2_EVENT_ADDED_TO_WISHLIST
● FacebookExtension2_EVENT_COMPLETED_REGISTRATION
● FacebookExtension2_EVENT_COMPLETED_TUTORIAL
● FacebookExtension2_EVENT_INITIATED_CHECKOUT
● FacebookExtension2_EVENT_RATED
● FacebookExtension2_EVENT_SEARCHED
● FacebookExtension2_EVENT_SPENT_CREDITS
● FacebookExtension2_EVENT_UNLOCKED_ACHIEVEMENT
● FacebookExtension2_EVENT_VIEWED_CONTENT

You then supply a numeric value to be logged for the event as well as an event “object”, which is

a previously created DS list holding various keys and values. This list should be structured [key1,

value1, key2, value2, ...], where each key is one of the following constants:

● FacebookExtension2_PARAM_CONTENT_ID
● FacebookExtension2_PARAM_CONTENT_TYPE
● FacebookExtension2_PARAM_CURRENCY
● FacebookExtension2_PARAM_DESCRIPTION
● FacebookExtension2_PARAM_LEVEL
● FacebookExtension2_PARAM_MAX_RATING_VALUE
● FacebookExtension2_PARAM_NUM_ITEMS
● FacebookExtension2_PARAM_PAYMENT_INFO_AVAILABLE
● FacebookExtension2_PARAM_REGISTRATION_METHOD
● FacebookExtension2_PARAM_SEARCH_STRING
● FacebookExtension2_PARAM_SUCCESS

If you do not wish to include an event “object” then simply supply a value of -1 instead of a DS

list ID.

You can get more information on the different event types and parameters here.

https://developers.facebook.com/docs/app-events/
https://developers.facebook.com/docs/app-events/getting-started-app-events-web

Cont../

fb_send_event Cont../

Syntax

fb_send_event(event_id, event_value_float, event_value_object);

Argument Description Data Type
event_id The analytics event ID. see the description

above for details of the available
constants.

Constant

event_value_float Numeric value to be logged for this event Real
event_value_object A list of key/value pairs for logging more

advanced event parameter data. List
format: [key1, value1, key2, value2, ...].
See the description above the possible
key constants.

Integer
(DS list ID)

Returns

N/A

Example

if global.Level == 100
{
fb_send_event(FacebookExtension2_EVENT_ACHIEVED_LEVEL, 100, -1);
}

fb_check_permission

Description

With this function you can check the Facebook API to see if the user has granted a specific

permission, either read or publish. The function will return true if they have the permission or

false if they do not or there is an error. Note that the user must be logged in for the check to

function. See here for a list of available Facebook permissions.

Syntax

fb_check_permission(permission);

Argument Description Data Type
permission The permission to check String

Returns

Real

Example

var permissions = ds_list_create();
if !facebook_check_permission("user_likes")

{
ds_list_add(permissions, "user_likes");
}

if !facebook_check_permission("user_interests")
{
ds_list_add(permissions, "user_interests");
}

if !ds_list_empty(permissions)
{
request_ID = facebook_request_read_permissions(permissions);
}

ds_list_destroy(permissions);

https://developers.facebook.com/docs/facebook-login/permissions

fb_request_read_permissions

Description

With this function you can request additional read permissions from the Facebook API. These

permissions are added (as strings) to a previously created ds_list which is then used in the

function to send the request. The user must be successfully logged in (ie. they have called

fb_login()) and the fb_status() should be "AUTHORISED" before you call this function.

When you call the function, it will return an integer request ID value that can be used in the

Social Asynchronous Event to identify the request that triggered the event. In this Async event,

you can then check the built-in DS map async_load for the following keys:

Key Description Data Type

“type” Used for identifying the type of
API call that this event was
generated by.

String:
“fb_refresh_accesstoken”

“requestId” Contains the unique request ID
returned by the function call that
this request was generated by.

Integer

“status” Used to identify whether or not
the API call was successful.

String:
“success”
“error”

“exception” Returned if “status” is equal to
"error". Provides details on the
exception that caused the error.

String

“<permission>” A permission key. Each
permission requested will be
added as a separate key.

String:
“granted”
“declined”

If the function returns -1 then it means that there is an issue with making the request (for

example, the user has not logged in).

See here for a list of available Facebook permissions

https://developers.facebook.com/docs/facebook-login/permissions

Cont…/

fb_request_read_permissions Cont…/

Syntax

fb_request_read_permissions(permission_list);

Argument Description Data Type
permission_list A DS list with the permissions to request String

Returns

Integer (request ID)

Example

var permissions = ds_list_create();
if !facebook_check_permission("user_likes")

{
ds_list_add(permissions, "user_likes");
}

if !facebook_check_permission("user_interests")
{
ds_list_add(permissions, "user_interests");
}

if !ds_list_empty(permissions)
{
request_ID = facebook_request_read_permissions(permissions);
}

ds_list_destroy(permissions);

fb_request_publish_permissions

Description

With this function you can request additional publish permissions from the Facebook API. These

permissions are added (as strings) to a previously created ds_list which is then used in the

function to send the request. The user must be successfully logged in (ie. they have called

fb_login()) and the fb_status() should be "AUTHORISED" before you call this function.

When you call the function, it will return an integer request ID value that can be used in the

Social Asynchronous Event to identify the request that triggered the event. In this Async event,

you can then check the built-in DS map async_load for the following keys:

Key Description Data Type

“type” Used for identifying the type of
API call that this event was
generated by.

String:
“fb_refresh_accesstoken”

“requestId” Contains the unique request ID
returned by the function call that
this request was generated by.

Integer

“status” Used to identify whether or not
the API call was successful.

String:
“success”
“error”

“exception” Returned if “status” is equal to
"error". Provides details on the
exception that caused the error.

String

“<permission>” A permission key. Each
permission requested will be
added as a separate key.

String:
“granted”
“declined”

If the function returns -1 then it means that there is an issue with making the request (for

example, the user has not logged in).

See here for a list of available Facebook permissions

https://developers.facebook.com/docs/facebook-login/permissions

Cont…/

fb_request_publish_permissions Cont…/

Syntax

fb_request_publish_permissions(permission_list);

Argument Description Data Type
permission_list A DS list with the permissions to request String

Returns

Integer (request ID)

Example

var permissions = ds_list_create();
if !facebook_check_permission("publish_to_groups")

{
ds_list_add(permissions, " publish_to_groups");
}

if !ds_list_empty(permissions)
{
request_ID = facebook_request_publish_permissions(permissions);
}

ds_list_destroy(permissions);

fb_graph_request

Description

With this function you can get the user to interact with the Facebook Social Graph. The

"graph_path" argument is where you define the part of the graph you wish to access, like the

current user friends list, or comments on another app, or even an event. The exact path can be

defined using the terms outlined in the Publishing section of the Facebook Graph API pages. You

then define the http method to use which is usually “POST” or “GET” but Facebook also accepts

the “DELETE” method.

The next argument is slightly more complex as it requires you to have created and filled a DS list

with the correct information which GameMaker Studio 2 will then convert into json

automatically to be sent to the Facebook API. The information that you put in this list will

depend very much on which path you choose to use and a complete list of all possible values can

be found here. Note that if the graph path requires no extra parameters, then you should supply

a value of -1 instead of a DS list ID. The DS list should be formatted with consecutive key value

pairs, eg:

var _l = ds_list_create(“key”, “value”, “key”, “value”, etc..);

When you call the function, it will return an integer request ID value that can be used in the

Social Asynchronous Event to identify the request that triggered the event. In this Async event,

you can then check the built-in DS map async_load for the following keys:

Key Description Data Type

“type” Used for identifying the type of
API call that this event was
generated by.

String:
“fb_graph_request”

“requestId” Contains the unique request ID
returned by the function call that
this request was generated by.

Integer

“status” Used to identify whether or not
the API call was successful.

String:
“success”
“error”

“exception” Returned if “status” is equal to
"error". Provides details on the
exception that caused the error.

String

“response_text” The response of this graph API
request, encoded into a JSON
string.

String (JSON)

If the function returns -1 then it means that there is an issue with making the request (for

example, the user has not logged in).

https://developers.facebook.com/docs/graph-api
https://developers.facebook.com/docs/graph-api/reference

Cont…/

fb_graph_request Cont…/

Syntax

fb_graph_request(graph_path, http_method, ds_list_params);

Argument Description Data Type
graph_path The graph API path for the request string
http_method The HTTP method to be used for the API

request.
ds_list_params A DS List containing parameters for the

API request. Use -1 if there are no
additional parameters to be added

Integer
(DS list ID)

Returns

Real

Example

mRequestId = fb_graph_request(string("me/permissions"), "DELETE", -1);
fb_logout();

fb_dialog

Description

With this function you can open a Facebook dialog with a specific link. The dialog will then be

shown to the user and they can edit the contents, add text, etc… The initial contents of the

dialog will depend on the link given to the function, as the Facebook API will try and pull a title,

an icon image and a descriptive text from the given URL to populate the dialog. You can optimise

this process following the Facebook Open Graph Markup Guide.

When you call the function, it will return an integer request ID value that can be used in the

Social Asynchronous Event to identify the request that triggered the event. In this Async event,

you can then check the built-in DS map async_load for the following keys:

Key Description Data Type

“type” Used for identifying the type of
API call that this event was
generated by.

String:
“fb_graph_request”

“requestId” Contains the unique request ID
returned by the function call that
this request was generated by.

Integer

“status” Used to identify whether or not
the API call was successful.

String:
“success”
“cancelled”
“error”

“exception” Returned if “status” is equal to
"error". Provides details on the
exception that caused the error.

String

If the function returns -1 then it means that there is an issue with making the request (for

example, the user has not logged in).

Syntax

fb_dialog(link_url);

Argument Description Data Type
link_url URL to the post to be shared String

https://developers.facebook.com/docs/sharing/overview#dialogs
https://developers.facebook.com/docs/sharing/webmasters#markup

Cont…/

fb_dialog Cont…/

Returns

Real

Example

if fb_status() == “AUTHORISED”
{
if mouse_check_button_pressed(mb_left)

{
fb_dialog("https://developers.facebook.com/docs/ios/share/");
}

}

